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ABSTRACT 

 
The parameter variation on MHD oscillatory fluid flow in a porous parallel channel with heat was investigated. The 
governing equations were formulated, and the coupled partial differential equations were converted to ordinary 
differential equations by adopting perturbation parameters involving the oscillatory frequency terms such as 

i t
ou u e  and i t

oe
  in the channel of flow for velocity and temperature profiles respectively. Numerical 

simulation was carried out using Mathematica 12 to study the velocity and temperature profiles with some pertinent 
parameters such as , , , , ,Gr Pr M K Rd R . In addition, it is seen that some of the aforementioned parameters influenced 
the flow profiles in increasing and decreasing fashion which is very important in annexing the usefulness of the 
parameters to study flow in a porous parallel channels. 
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INTRODUCTION 
 
The variation of some physical parameters in scientific 
detailing of a circumstance is of foremost significance in 
many fields, for example, building, natural and other 
mechanical segments. For example, the occasional blood 
stream in the cardiovascular framework can be portrayed 
by the recurrence segments of the weight and stream rate 
beats, and numerous vascular ailments are related with 
unsettling influences of the neighborhood stream 
conditions in the veins. A few amazing examinations have 
been introduced concerning oscillatory stream in a 
permeable equal channel with heat Bunonyo et al. (2017, 
2019). Ahmed et al. (2015) did an examination to read the 
numerical investigation for MHD emanating heat/mass 
vehicle in a Darcian permeable system limited by a 
swaying vertical surface. Balamurugan et al. (2015) 
detailed a temperamental MHD free convective stream 
past a moving vertical plate with time subordinate pull 
and compound response in a slip stream system. Chand et 
al. (2013) have acquired the explanatory answers for 
oscillatory free convective progression of gooey liquid 
through permeable medium in a pivoting vertical channel. 
Cogley et al. (1968) considered the differential estimation 
for radiative warmth move in a non-straight condition dim 
gas close to harmony. El-Hakien and Hamza (2000, 2011, 
2014) examined a MHD oscillatory stream on free 
convection radiation through a permeable medium. 

Ibrahim et al. (2008) examined the impact of the 
concoction response and radiation retention on the flimsy 
MHD free convection stream past a semi–limitless 
vertical porous moving plate with heat source and 
attractions.  
 
The warmth and mass exchange impacts on MHD 
oscillatory stream in a channel loaded up with permeable 
medium examined by Ibrahim and Makinde (2005, 2015). 
Kataria and Patel (2016) have researched the impacts of 
radiation and synthetic response on MHD Casson liquid 
stream past a swaying vertical plate installed in permeable 
medium. Malapati and Polarapu (2015) contemplated the 
time-subordinate MHD free convective warmth and mass 
exchange in a limit layer stream past a vertical porous 
plate with warm radiation and substance response. The 
liquid property impacts gooey dissemination since variety 
in liquid consistency because of temperature may 
influence the stream attributes. Gooey dispersal assumes a 
significant job in different territories, for example, food 
handling, polymer fabricating, topographical procedures 
in liquids contained in different bodies, and numerous 
others. Mansour et al. (2008) looks at the impacts of 
compound response and thick dispersal on MHD common 
convection streams filled in permeable media. The 
authors (Misra and Adhikary, 2016; Mohammed et al., 
2015; Muthucumaraswamy and Manivannan, 2007; 
Sekhar and Reddy, 2012) looked into a MHD oscillatory 
channel stream, warmth and mass exchange in a direct in 
nearness of concoction response and warmth motion. 
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Warmth and mass exchange impacts on MHD free 
convective course through permeable medium within the 
sight of radiation and thick dispersal was researched by 
Prasad and Salawu (2007, 2016). Sharma et al. (2014) 
dissected radiative and free convective consequences for 
MHD move through a permeable medium with 
intermittent wall temperature and heat generation or 
ingestion. 
 
MATHEMATICAL FORMULATION 
 
We investigate the parameter variation of MHD oscillator 
fluid flow in a porous parallel channel with heat with the 
consideration of the fluid as an incompressible, optically 
thin radiating and radiation absorbing fluid in an infinite 
horizontal parallel channel. The *- axisx is taking along 
the horizontal channel in the horizontal direction, the 

*- axisy is perpendicular to the wall of the channel and 
the transverse magnetic field of uniformly applied with 
the strength oB in the direction parallel to the *y - axis. 
Also, we assume that the flow is time dependent and the 
flow started at zero, and we present the following 
formulated governing equation: 
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Using the following non-dimensional parameters: 
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The corresponding boundary conditions are: 
0u   ,   1 i te       at  1y     (8) 
0u   ,  1          at  0y    (9) 

 

MATERIALS AND METHODS 
 
Method of Solutions 
 
For us to solve equation (6) and (7), the coupled, non-
linear differential equations, we assume an oscillatory 
behavior inside the channel and as such we consider the 
following oscillatory condition, as follows: 
 i t

ou u e   , i t
oe

       (10) 
Substituting equation (10) into equations (6) and (7), we 
have the following: 
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where   2 2 2
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Solving equations (11) and (12) using the boundary 
conditions in equations (13) and (14), we have the 
following functions for velocity and temperature profiles 
as 
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Solving equation (15), we have the following 
homogenous and in homogenous solutions as: 
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So that the general solution for equation (15) is as 
follows: 
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RESULTS 
 
The reduced nonlinear differential equations governing 
the fluid flow were solved analytically using perturbation 
technique. The simulation was carried out using the 
software called Mathematica, version 12 and for different 

values of pertinent physical parameters such 
as , , , ,  and Rd M Gr K R  . The influence of the 
resulting parameters on velocity and temperature, skin 
friction and the rate of heat transfer are investigated. 

 
 
 

 
 

 

Fig. 1. Influence of K on velocity profile with other valuable parameters. 

Fig. 2. Influence of M on velocity profile with other valuable parameters. 
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Fig. 3. Influence of R on velocity profile with other valuable parameters. 

Fig. 4. Influence of Gr on velocity profile with other valuable parameters. 
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Fig. 5. Influence of R on temperature profile with other parameters. 

Fig. 6. Influence of Pr on velocity profile with other valuable parameters. 
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Fig. 7. Influence of  on velocity profile with other valuable parameters. 

Fig. 8. Influence of K on Shear Stress against Grashof numberGr with other parameters. 
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Fig. 9. Influence of M on Shear Stress against porosity K with other parameters. 

Fig. 10. Influence of Rd on Nu against K with other parameters. 
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DISCUSSION  
 
In the preceding section, we have been able to carry out 
numerical simulation of the analytical solution 
considering the variation of the pertinent parameters as 
mentioned, the results are discussed as follows: 
 
In Figure 1, it is observed that the velocity profile 
insignificantly reduced with the increasing values of the 
permeability parameter K . It is a clear indication that 
velocity profile becomes thick for the increasing values 
of K . Figure 2 also demonstrates the influence of the 
Hartmann number M on the velocity profile. It is 
observed that the velocity profile reduces with increasing 
values of M . It is so because the application of transverse 
magnetic field plays the role of resistive force or Lorentz 
force just like the drag force that acts opposite to the 
direction of fluid motion. 
 
Figure 3 depicts that an increase in radiation absorption 
parameter R leads to decreasing fluid boundary layer. It is 
so because large values of R corresponds to an increasing 
dominance of the conduction over R  thereby decreasing 
the boundary thickness of the momentum boundary layer. 
 

It is also shown in Figure 4 shows the effect of Gr on the 
velocity profile. It is seen that the velocity profile 
increased significantly with the increasing values 
of 0Gr  . The fluid velocity increase is due to the 
enhancement of thermal boundary force. The temperature 
is so significant in the sense that it can help in enhancing 
the fluid behavior and as such we take a look at Figure 5, 
this figure depicts that radiation absorption 
parameter, R influenced the temperature beginning from 

1  and gets to a maximum value as 1y  . 
 
Figure 6 clearly indicates that the increase in Pr leads to 
the corresponding decreasing in the temperature profile. 
This is so since at high Prandtl number, Pr  the thermal 
difference of the fluid is reduced and causes weak 
penetration of heat inside the fluid. Figure 7 depicts also 
that increase in oscillatory parameter led to a 
corresponding increasing in temperature profiles. 
 
We could see in Figure 8 and Figure 9 it can be clearly 
seen that permeability parameter and Hartmann number 
caused a decrease in shear stress against Grashoff and 
permeability, respectively. Figure 10 and Figure 11 tells 
that the rate of heat transfer increases against permeability 

Fig. 11. Influence of Rd on Nu against with other parameters. 
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and oscillatory parameters respectively as the radiation 
heat parameter is increased. 
 
CONCLUSION 
 
The investigation of parameter variation on MHD 
oscillator fluid flow in a porous parallel channel with heat 
has been studied. The governing equations are solved 
analytically and numerical simulations were carried out 
using mathematical software called Mathematic version 
12, to study/observe the effect of the governing 
parameters on the velocity,  temperature profile, 
the skin friction and the rate of heat transfer are presented 
graphically. 
 
We can conclude from the results that: 
1. The velocity profile was enhanced for the increasing 

value of 0Gr  while the contrast trend is found 
on , ,  and M K R Pr . 

2. The temperature profile decreases with the increasing 
values of ,  and R Pr  . 

 
The increasing values of  and K M caused the shear 
stress to reduce. However, the radiation parameter and the 
radiation absorption parameter values increase caused a 
corresponding increase in the rate of heat transfer. 
It is presumed that, with the help of our formulated 
model, the physics of the flow through a parallel channel 
can be utilized as the basis for many scientific 
applications. The results are of great interest in 
geophysics and other physical sciences. 
 
NOMENCLATURE 

 
*u   Dimensional velocity profile 

ou   Perturbed velocity profile 
* *,x y   Dimensional distances 

R   Heat absorption parameter 
Rd   Heat absorption constant 

Tk   Thermal conductivity of the fluid 

K   Porosity parameter 
Gr   Thermal Grashof number 
up   Wall dimensionless velocity 

oB   Strength of applied magnetic field 
Cp   Specific heat capacity at constant pressure 
M   Magnetic parameter 

*T   Temperature of the fluid 
*T   Temperature of the fluid far from the plate 

 
 

Greek Symbols 
 

   Kinematic viscosity 
Pr   Prandtl number 
   Dynamic viscosity  
g   Acceleration due to gravity  
   Oscillatory frequency 

T   Thermal expansion coefficient  

   Dimensionless temperature 

o   Dimensionless perturbed temperature 
   Density of the fluid 
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